MA114 Summer 2018
 Worksheet 5 - Approximate Integration 6/14/18

1. (a) Write down the Midpoint rule and illustrate how it works with a sketch.
(b) How large should n be in the Midpoint rule so that you can approximate

$$
\int_{0}^{1} \sin (x) d x
$$

with an error less than 10^{-7} ?
2. Use the midpoint rule to approximate the value of $\int_{-1}^{1} e^{-x^{2}} d x$ with $n=4$. Draw a sketch to determine if the approximation is an overestimate or underestimate of the integral.
3. Draw the graph of $f(x)=\sin \left(\frac{1}{2} x^{2}\right)$ in the region $[0,1]$ by $[0,0.5]$ and let $I=\int_{0}^{1} f(x) d x$.
(a) Use the graph to decide whether L_{2}, R_{2}, M_{2}, and T_{2} underestimate or overestimate I.
(b) For any value of n, list the numbers $L_{n}, R_{n}, M_{n}, T_{n}$, and I in increasing order.
(c) Compute L_{5}, R_{5}, M_{5}, and T_{5}. From the graph, which do you think gives the best estimate of I ?
4. The velocity in meters per second for a particle traveling along the axis is given in the table below. Use the Midpoint rule and Trapezoid rule to approximate the total displacement of the particle from $t=0$ to $t=6$.

t	$v(t)$
0	0.75
1	1.34
2	1.5
3	1.9
4	2.5
5	3.2
6	3.0

5. Approximate the integral $\int_{1}^{2} \frac{1}{x} d x$ using Simpson's rule. Choose n so that your error is certain to be less than 10^{-3}. Compute the exact value of the integral and compare it to your approximation.
