MA114 Summer 2018 Worksheet 5 – Approximate Integration 6/14/18

- 1. (a) Write down the Midpoint rule and illustrate how it works with a sketch.
 - (b) How large should n be in the Midpoint rule so that you can approximate

$$\int_0^1 \sin(x) \, dx$$

with an error less than 10^{-7} ?

- 2. Use the midpoint rule to approximate the value of $\int_{-1}^{1} e^{-x^2} dx$ with n = 4. Draw a sketch to determine if the approximation is an overestimate or underestimate of the integral.
- 3. Draw the graph of $f(x) = \sin(\frac{1}{2}x^2)$ in the region [0, 1] by [0, 0.5] and let $I = \int_0^1 f(x) \, dx$.
 - (a) Use the graph to decide whether L_2, R_2, M_2 , and T_2 underestimate or overestimate I.
 - (b) For any value of n, list the numbers L_n, R_n, M_n, T_n , and I in increasing order.
 - (c) Compute L_5, R_5, M_5 , and T_5 . From the graph, which do you think gives the best estimate of I?
- 4. The velocity in meters per second for a particle traveling along the axis is given in the table below. Use the Midpoint rule and Trapezoid rule to approximate the total displacement of the particle from t = 0 to t = 6.

t	v(t)
0	0.75
1	1.34
2	1.5
3	1.9
4	2.5
5	3.2
6	3.0

5. Approximate the integral $\int_{1}^{2} \frac{1}{x} dx$ using Simpson's rule. Choose *n* so that your error is certain to be less than 10^{-3} . Compute the exact value of the integral and compare it to your approximation.